3.2.12 \(\int \frac {(a+b \tan (e+f x)) (A+B \tan (e+f x)+C \tan ^2(e+f x))}{\sqrt {c+d \tan (e+f x)}} \, dx\) [112]

Optimal. Leaf size=194 \[ -\frac {(i a+b) (A-i B-C) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d}}\right )}{\sqrt {c-i d} f}+\frac {(i a-b) (A+i B-C) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c+i d}}\right )}{\sqrt {c+i d} f}-\frac {2 (2 b c C-3 b B d-3 a C d) \sqrt {c+d \tan (e+f x)}}{3 d^2 f}+\frac {2 b C \tan (e+f x) \sqrt {c+d \tan (e+f x)}}{3 d f} \]

[Out]

-(I*a+b)*(A-I*B-C)*arctanh((c+d*tan(f*x+e))^(1/2)/(c-I*d)^(1/2))/f/(c-I*d)^(1/2)+(I*a-b)*(A+I*B-C)*arctanh((c+
d*tan(f*x+e))^(1/2)/(c+I*d)^(1/2))/f/(c+I*d)^(1/2)-2/3*(-3*B*b*d-3*C*a*d+2*C*b*c)*(c+d*tan(f*x+e))^(1/2)/d^2/f
+2/3*b*C*(c+d*tan(f*x+e))^(1/2)*tan(f*x+e)/d/f

________________________________________________________________________________________

Rubi [A]
time = 0.33, antiderivative size = 194, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {3718, 3711, 3620, 3618, 65, 214} \begin {gather*} -\frac {(b+i a) (A-i B-C) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d}}\right )}{f \sqrt {c-i d}}+\frac {(-b+i a) (A+i B-C) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c+i d}}\right )}{f \sqrt {c+i d}}-\frac {2 (-3 a C d-3 b B d+2 b c C) \sqrt {c+d \tan (e+f x)}}{3 d^2 f}+\frac {2 b C \tan (e+f x) \sqrt {c+d \tan (e+f x)}}{3 d f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + b*Tan[e + f*x])*(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2))/Sqrt[c + d*Tan[e + f*x]],x]

[Out]

-(((I*a + b)*(A - I*B - C)*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]])/(Sqrt[c - I*d]*f)) + ((I*a - b)*(A
 + I*B - C)*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c + I*d]])/(Sqrt[c + I*d]*f) - (2*(2*b*c*C - 3*b*B*d - 3*a*C
*d)*Sqrt[c + d*Tan[e + f*x]])/(3*d^2*f) + (2*b*C*Tan[e + f*x]*Sqrt[c + d*Tan[e + f*x]])/(3*d*f)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3618

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c*(
d/f), Subst[Int[(a + (b/d)*x)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3620

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3711

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[C*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f*x])
^m*Simp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0]
&&  !LeQ[m, -1]

Rule 3718

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*tan[(e
_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[b*C*Tan[e + f*x]*((c + d*Tan[e + f*x])
^(n + 1)/(d*f*(n + 2))), x] - Dist[1/(d*(n + 2)), Int[(c + d*Tan[e + f*x])^n*Simp[b*c*C - a*A*d*(n + 2) - (A*b
 + a*B - b*C)*d*(n + 2)*Tan[e + f*x] - (a*C*d*(n + 2) - b*(c*C - B*d*(n + 2)))*Tan[e + f*x]^2, x], x], x] /; F
reeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[c^2 + d^2, 0] &&  !LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {(a+b \tan (e+f x)) \left (A+B \tan (e+f x)+C \tan ^2(e+f x)\right )}{\sqrt {c+d \tan (e+f x)}} \, dx &=\frac {2 b C \tan (e+f x) \sqrt {c+d \tan (e+f x)}}{3 d f}-\frac {2 \int \frac {\frac {1}{2} (2 b c C-3 a A d)-\frac {3}{2} (A b+a B-b C) d \tan (e+f x)+\frac {1}{2} (2 b c C-3 b B d-3 a C d) \tan ^2(e+f x)}{\sqrt {c+d \tan (e+f x)}} \, dx}{3 d}\\ &=-\frac {2 (2 b c C-3 b B d-3 a C d) \sqrt {c+d \tan (e+f x)}}{3 d^2 f}+\frac {2 b C \tan (e+f x) \sqrt {c+d \tan (e+f x)}}{3 d f}-\frac {2 \int \frac {\frac {3}{2} (b B-a (A-C)) d-\frac {3}{2} (A b+a B-b C) d \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}} \, dx}{3 d}\\ &=-\frac {2 (2 b c C-3 b B d-3 a C d) \sqrt {c+d \tan (e+f x)}}{3 d^2 f}+\frac {2 b C \tan (e+f x) \sqrt {c+d \tan (e+f x)}}{3 d f}+\frac {1}{2} ((a-i b) (A-i B-C)) \int \frac {1+i \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}} \, dx+\frac {1}{2} ((a+i b) (A+i B-C)) \int \frac {1-i \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}} \, dx\\ &=-\frac {2 (2 b c C-3 b B d-3 a C d) \sqrt {c+d \tan (e+f x)}}{3 d^2 f}+\frac {2 b C \tan (e+f x) \sqrt {c+d \tan (e+f x)}}{3 d f}+\frac {((i a+b) (A-i B-C)) \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {c-i d x}} \, dx,x,i \tan (e+f x)\right )}{2 f}-\frac {((i a-b) (A+i B-C)) \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {c+i d x}} \, dx,x,-i \tan (e+f x)\right )}{2 f}\\ &=-\frac {2 (2 b c C-3 b B d-3 a C d) \sqrt {c+d \tan (e+f x)}}{3 d^2 f}+\frac {2 b C \tan (e+f x) \sqrt {c+d \tan (e+f x)}}{3 d f}-\frac {((a-i b) (A-i B-C)) \text {Subst}\left (\int \frac {1}{-1-\frac {i c}{d}+\frac {i x^2}{d}} \, dx,x,\sqrt {c+d \tan (e+f x)}\right )}{d f}-\frac {((a+i b) (A+i B-C)) \text {Subst}\left (\int \frac {1}{-1+\frac {i c}{d}-\frac {i x^2}{d}} \, dx,x,\sqrt {c+d \tan (e+f x)}\right )}{d f}\\ &=-\frac {(i a+b) (A-i B-C) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d}}\right )}{\sqrt {c-i d} f}+\frac {(i a-b) (A+i B-C) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c+i d}}\right )}{\sqrt {c+i d} f}-\frac {2 (2 b c C-3 b B d-3 a C d) \sqrt {c+d \tan (e+f x)}}{3 d^2 f}+\frac {2 b C \tan (e+f x) \sqrt {c+d \tan (e+f x)}}{3 d f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.98, size = 192, normalized size = 0.99 \begin {gather*} \frac {2 \left (-\frac {3 i (a-i b) (A-i B-C) d \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d}}\right )}{2 \sqrt {c-i d}}+\frac {3 i (a+i b) (A+i B-C) d \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c+i d}}\right )}{2 \sqrt {c+i d}}+\frac {(-2 b c C+3 b B d+3 a C d) \sqrt {c+d \tan (e+f x)}}{d}+b C \tan (e+f x) \sqrt {c+d \tan (e+f x)}\right )}{3 d f} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a + b*Tan[e + f*x])*(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2))/Sqrt[c + d*Tan[e + f*x]],x]

[Out]

(2*((((-3*I)/2)*(a - I*b)*(A - I*B - C)*d*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]])/Sqrt[c - I*d] + (((
3*I)/2)*(a + I*b)*(A + I*B - C)*d*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c + I*d]])/Sqrt[c + I*d] + ((-2*b*c*C
+ 3*b*B*d + 3*a*C*d)*Sqrt[c + d*Tan[e + f*x]])/d + b*C*Tan[e + f*x]*Sqrt[c + d*Tan[e + f*x]]))/(3*d*f)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1348\) vs. \(2(166)=332\).
time = 0.44, size = 1349, normalized size = 6.95 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(f*x+e))*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/f/d^2*(1/3*C*(c+d*tan(f*x+e))^(3/2)*b+B*b*d*(c+d*tan(f*x+e))^(1/2)+C*a*d*(c+d*tan(f*x+e))^(1/2)-C*b*c*(c+d*t
an(f*x+e))^(1/2)+d^2*(1/4/(c^2+d^2)^(1/2)/d*(1/2*(-A*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*a+A*(2*(c^2
+d^2)^(1/2)+2*c)^(1/2)*a*c+A*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b*d+B*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)
*b+B*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a*d-B*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b*c+C*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^
2+d^2)^(1/2)*a-C*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a*c-C*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b*d)*ln(d*tan(f*x+e)+c-(c+d
*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))+2*(2*A*a*d^2-2*A*b*c*d-2*B*a*c*d-2*B*b*d^2-2
*C*a*d^2+2*C*b*c*d+1/2*(-A*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*a+A*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a*c
+A*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b*d+B*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*b+B*(2*(c^2+d^2)^(1/2)+2*
c)^(1/2)*a*d-B*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b*c+C*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*a-C*(2*(c^2+d
^2)^(1/2)+2*c)^(1/2)*a*c-C*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b*d)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2
)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)-(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)))+1
/4/(c^2+d^2)^(1/2)/d*(1/2*(A*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*a-A*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a
*c-A*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b*d-B*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*b-B*(2*(c^2+d^2)^(1/2)+
2*c)^(1/2)*a*d+B*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b*c-C*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*a+C*(2*(c^2
+d^2)^(1/2)+2*c)^(1/2)*a*c+C*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b*d)*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c
^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))+2*(2*A*a*d^2-2*A*b*c*d-2*B*a*c*d-2*B*b*d^2-2*C*a*d^2+2*C*b*c*d-1/2*(
A*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*a-A*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a*c-A*(2*(c^2+d^2)^(1/2)+2*c
)^(1/2)*b*d-B*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*b-B*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a*d+B*(2*(c^2+d^
2)^(1/2)+2*c)^(1/2)*b*c-C*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*a+C*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a*c+
C*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b*d)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c
+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)))))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*tan(f*x + e)^2 + B*tan(f*x + e) + A)*(b*tan(f*x + e) + a)/sqrt(d*tan(f*x + e) + c), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b \tan {\left (e + f x \right )}\right ) \left (A + B \tan {\left (e + f x \right )} + C \tan ^{2}{\left (e + f x \right )}\right )}{\sqrt {c + d \tan {\left (e + f x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))*(A+B*tan(f*x+e)+C*tan(f*x+e)**2)/(c+d*tan(f*x+e))**(1/2),x)

[Out]

Integral((a + b*tan(e + f*x))*(A + B*tan(e + f*x) + C*tan(e + f*x)**2)/sqrt(c + d*tan(e + f*x)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, need to choose a branch for the root of a polynomial with parameters. This might be wrong.The choi
ce was done

________________________________________________________________________________________

Mupad [B]
time = 23.48, size = 2500, normalized size = 12.89 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*tan(e + f*x))*(A + B*tan(e + f*x) + C*tan(e + f*x)^2))/(c + d*tan(e + f*x))^(1/2),x)

[Out]

((2*B*b*d - 6*C*b*c)/(d^2*f) + (4*C*b*c)/(d^2*f))*(c + d*tan(e + f*x))^(1/2) - atan(((((8*(4*C*a*d^3*f^2 - 4*A
*a*d^3*f^2 + 4*B*a*c*d^2*f^2))/f^3 - 64*c*d^2*(c + d*tan(e + f*x))^(1/2)*((((8*A^2*a^2*c*f^2 - 8*B^2*a^2*c*f^2
 + 8*C^2*a^2*c*f^2 + 16*A*B*a^2*d*f^2 - 16*A*C*a^2*c*f^2 - 16*B*C*a^2*d*f^2)^2/4 - (16*c^2*f^4 + 16*d^2*f^4)*(
A^4*a^4 + B^4*a^4 + C^4*a^4 - 4*A*C^3*a^4 - 4*A^3*C*a^4 + 2*A^2*B^2*a^4 + 6*A^2*C^2*a^4 + 2*B^2*C^2*a^4 - 4*A*
B^2*C*a^4))^(1/2) - 4*A^2*a^2*c*f^2 + 4*B^2*a^2*c*f^2 - 4*C^2*a^2*c*f^2 - 8*A*B*a^2*d*f^2 + 8*A*C*a^2*c*f^2 +
8*B*C*a^2*d*f^2)/(16*(c^2*f^4 + d^2*f^4)))^(1/2))*((((8*A^2*a^2*c*f^2 - 8*B^2*a^2*c*f^2 + 8*C^2*a^2*c*f^2 + 16
*A*B*a^2*d*f^2 - 16*A*C*a^2*c*f^2 - 16*B*C*a^2*d*f^2)^2/4 - (16*c^2*f^4 + 16*d^2*f^4)*(A^4*a^4 + B^4*a^4 + C^4
*a^4 - 4*A*C^3*a^4 - 4*A^3*C*a^4 + 2*A^2*B^2*a^4 + 6*A^2*C^2*a^4 + 2*B^2*C^2*a^4 - 4*A*B^2*C*a^4))^(1/2) - 4*A
^2*a^2*c*f^2 + 4*B^2*a^2*c*f^2 - 4*C^2*a^2*c*f^2 - 8*A*B*a^2*d*f^2 + 8*A*C*a^2*c*f^2 + 8*B*C*a^2*d*f^2)/(16*(c
^2*f^4 + d^2*f^4)))^(1/2) - (16*(c + d*tan(e + f*x))^(1/2)*(A^2*a^2*d^2 - B^2*a^2*d^2 + C^2*a^2*d^2 - 2*A*C*a^
2*d^2))/f^2)*((((8*A^2*a^2*c*f^2 - 8*B^2*a^2*c*f^2 + 8*C^2*a^2*c*f^2 + 16*A*B*a^2*d*f^2 - 16*A*C*a^2*c*f^2 - 1
6*B*C*a^2*d*f^2)^2/4 - (16*c^2*f^4 + 16*d^2*f^4)*(A^4*a^4 + B^4*a^4 + C^4*a^4 - 4*A*C^3*a^4 - 4*A^3*C*a^4 + 2*
A^2*B^2*a^4 + 6*A^2*C^2*a^4 + 2*B^2*C^2*a^4 - 4*A*B^2*C*a^4))^(1/2) - 4*A^2*a^2*c*f^2 + 4*B^2*a^2*c*f^2 - 4*C^
2*a^2*c*f^2 - 8*A*B*a^2*d*f^2 + 8*A*C*a^2*c*f^2 + 8*B*C*a^2*d*f^2)/(16*(c^2*f^4 + d^2*f^4)))^(1/2)*1i - (((8*(
4*C*a*d^3*f^2 - 4*A*a*d^3*f^2 + 4*B*a*c*d^2*f^2))/f^3 + 64*c*d^2*(c + d*tan(e + f*x))^(1/2)*((((8*A^2*a^2*c*f^
2 - 8*B^2*a^2*c*f^2 + 8*C^2*a^2*c*f^2 + 16*A*B*a^2*d*f^2 - 16*A*C*a^2*c*f^2 - 16*B*C*a^2*d*f^2)^2/4 - (16*c^2*
f^4 + 16*d^2*f^4)*(A^4*a^4 + B^4*a^4 + C^4*a^4 - 4*A*C^3*a^4 - 4*A^3*C*a^4 + 2*A^2*B^2*a^4 + 6*A^2*C^2*a^4 + 2
*B^2*C^2*a^4 - 4*A*B^2*C*a^4))^(1/2) - 4*A^2*a^2*c*f^2 + 4*B^2*a^2*c*f^2 - 4*C^2*a^2*c*f^2 - 8*A*B*a^2*d*f^2 +
 8*A*C*a^2*c*f^2 + 8*B*C*a^2*d*f^2)/(16*(c^2*f^4 + d^2*f^4)))^(1/2))*((((8*A^2*a^2*c*f^2 - 8*B^2*a^2*c*f^2 + 8
*C^2*a^2*c*f^2 + 16*A*B*a^2*d*f^2 - 16*A*C*a^2*c*f^2 - 16*B*C*a^2*d*f^2)^2/4 - (16*c^2*f^4 + 16*d^2*f^4)*(A^4*
a^4 + B^4*a^4 + C^4*a^4 - 4*A*C^3*a^4 - 4*A^3*C*a^4 + 2*A^2*B^2*a^4 + 6*A^2*C^2*a^4 + 2*B^2*C^2*a^4 - 4*A*B^2*
C*a^4))^(1/2) - 4*A^2*a^2*c*f^2 + 4*B^2*a^2*c*f^2 - 4*C^2*a^2*c*f^2 - 8*A*B*a^2*d*f^2 + 8*A*C*a^2*c*f^2 + 8*B*
C*a^2*d*f^2)/(16*(c^2*f^4 + d^2*f^4)))^(1/2) + (16*(c + d*tan(e + f*x))^(1/2)*(A^2*a^2*d^2 - B^2*a^2*d^2 + C^2
*a^2*d^2 - 2*A*C*a^2*d^2))/f^2)*((((8*A^2*a^2*c*f^2 - 8*B^2*a^2*c*f^2 + 8*C^2*a^2*c*f^2 + 16*A*B*a^2*d*f^2 - 1
6*A*C*a^2*c*f^2 - 16*B*C*a^2*d*f^2)^2/4 - (16*c^2*f^4 + 16*d^2*f^4)*(A^4*a^4 + B^4*a^4 + C^4*a^4 - 4*A*C^3*a^4
 - 4*A^3*C*a^4 + 2*A^2*B^2*a^4 + 6*A^2*C^2*a^4 + 2*B^2*C^2*a^4 - 4*A*B^2*C*a^4))^(1/2) - 4*A^2*a^2*c*f^2 + 4*B
^2*a^2*c*f^2 - 4*C^2*a^2*c*f^2 - 8*A*B*a^2*d*f^2 + 8*A*C*a^2*c*f^2 + 8*B*C*a^2*d*f^2)/(16*(c^2*f^4 + d^2*f^4))
)^(1/2)*1i)/((((8*(4*C*a*d^3*f^2 - 4*A*a*d^3*f^2 + 4*B*a*c*d^2*f^2))/f^3 - 64*c*d^2*(c + d*tan(e + f*x))^(1/2)
*((((8*A^2*a^2*c*f^2 - 8*B^2*a^2*c*f^2 + 8*C^2*a^2*c*f^2 + 16*A*B*a^2*d*f^2 - 16*A*C*a^2*c*f^2 - 16*B*C*a^2*d*
f^2)^2/4 - (16*c^2*f^4 + 16*d^2*f^4)*(A^4*a^4 + B^4*a^4 + C^4*a^4 - 4*A*C^3*a^4 - 4*A^3*C*a^4 + 2*A^2*B^2*a^4
+ 6*A^2*C^2*a^4 + 2*B^2*C^2*a^4 - 4*A*B^2*C*a^4))^(1/2) - 4*A^2*a^2*c*f^2 + 4*B^2*a^2*c*f^2 - 4*C^2*a^2*c*f^2
- 8*A*B*a^2*d*f^2 + 8*A*C*a^2*c*f^2 + 8*B*C*a^2*d*f^2)/(16*(c^2*f^4 + d^2*f^4)))^(1/2))*((((8*A^2*a^2*c*f^2 -
8*B^2*a^2*c*f^2 + 8*C^2*a^2*c*f^2 + 16*A*B*a^2*d*f^2 - 16*A*C*a^2*c*f^2 - 16*B*C*a^2*d*f^2)^2/4 - (16*c^2*f^4
+ 16*d^2*f^4)*(A^4*a^4 + B^4*a^4 + C^4*a^4 - 4*A*C^3*a^4 - 4*A^3*C*a^4 + 2*A^2*B^2*a^4 + 6*A^2*C^2*a^4 + 2*B^2
*C^2*a^4 - 4*A*B^2*C*a^4))^(1/2) - 4*A^2*a^2*c*f^2 + 4*B^2*a^2*c*f^2 - 4*C^2*a^2*c*f^2 - 8*A*B*a^2*d*f^2 + 8*A
*C*a^2*c*f^2 + 8*B*C*a^2*d*f^2)/(16*(c^2*f^4 + d^2*f^4)))^(1/2) - (16*(c + d*tan(e + f*x))^(1/2)*(A^2*a^2*d^2
- B^2*a^2*d^2 + C^2*a^2*d^2 - 2*A*C*a^2*d^2))/f^2)*((((8*A^2*a^2*c*f^2 - 8*B^2*a^2*c*f^2 + 8*C^2*a^2*c*f^2 + 1
6*A*B*a^2*d*f^2 - 16*A*C*a^2*c*f^2 - 16*B*C*a^2*d*f^2)^2/4 - (16*c^2*f^4 + 16*d^2*f^4)*(A^4*a^4 + B^4*a^4 + C^
4*a^4 - 4*A*C^3*a^4 - 4*A^3*C*a^4 + 2*A^2*B^2*a^4 + 6*A^2*C^2*a^4 + 2*B^2*C^2*a^4 - 4*A*B^2*C*a^4))^(1/2) - 4*
A^2*a^2*c*f^2 + 4*B^2*a^2*c*f^2 - 4*C^2*a^2*c*f^2 - 8*A*B*a^2*d*f^2 + 8*A*C*a^2*c*f^2 + 8*B*C*a^2*d*f^2)/(16*(
c^2*f^4 + d^2*f^4)))^(1/2) + (((8*(4*C*a*d^3*f^2 - 4*A*a*d^3*f^2 + 4*B*a*c*d^2*f^2))/f^3 + 64*c*d^2*(c + d*tan
(e + f*x))^(1/2)*((((8*A^2*a^2*c*f^2 - 8*B^2*a^2*c*f^2 + 8*C^2*a^2*c*f^2 + 16*A*B*a^2*d*f^2 - 16*A*C*a^2*c*f^2
 - 16*B*C*a^2*d*f^2)^2/4 - (16*c^2*f^4 + 16*d^2*f^4)*(A^4*a^4 + B^4*a^4 + C^4*a^4 - 4*A*C^3*a^4 - 4*A^3*C*a^4
+ 2*A^2*B^2*a^4 + 6*A^2*C^2*a^4 + 2*B^2*C^2*a^4 - 4*A*B^2*C*a^4))^(1/2) - 4*A^2*a^2*c*f^2 + 4*B^2*a^2*c*f^2 -
4*C^2*a^2*c*f^2 - 8*A*B*a^2*d*f^2 + 8*A*C*a^2*c*f^2 + 8*B*C*a^2*d*f^2)/(16*(c^2*f^4 + d^2*f^4)))^(1/2))*((((8*
A^2*a^2*c*f^2 - 8*B^2*a^2*c*f^2 + 8*C^2*a^2*c*f...

________________________________________________________________________________________